\qquad
\qquad
\qquad

LEsson Problem Solving

7-2 Powers of 10 and Scientific Notation

Write the correct answer

1. Insects can multiply rapidly during the summer. A pair of houseflies could potentially grow to a population of 1.91×10^{20}. If all the descendants of a female cabbage aphid lived, the population could increase to 1.56×10^{24}. Which population would be larger?
2. The 2005 population estimates of five countries are listed below.
Brazil
1.86×10^{8}
India
1.08×10^{9}
Kenya
3.38×10^{7}
Philippines
8.79×10^{7}
United Kingdom
6.04×10^{7}
List the countries in order of population size from least to greatest.

The table shows astronomical data about several planets.

Use the table to answer questions 4-7. Select the best answer.

4. An AU is an astronomical unit. One AU equals $150,000,000 \mathrm{~km}$. What is that measure in scientific notation?

$$
\begin{aligned}
& \text { A } 1.50 \times 10^{8} \mathrm{~km} \text { C } 1.50 \times 10^{10} \mathrm{~km} \\
& \text { B } 1.50 \times 10^{9} \mathrm{~km} \text { D } 1.50 \times 10^{11} \mathrm{~km}
\end{aligned}
$$

6. Which of these is the average distance from the Sun to Mercury expressed in scientific notation?
A 0.38 AU
C $3.8 \times 10^{-1} \mathrm{AU}$
B $3.8 \times 10^{1} \mathrm{AU}$
D $38 \times 10^{-2} \mathrm{AU}$
7. What is the diameter of the Earth in scientific notation?

F $1.28 \times 10^{2} \mathrm{~km} \mathrm{H} 1.28 \times 10^{4} \mathrm{~km}$
G $1.28 \times 10^{3} \mathrm{~km} \mathrm{~J} 1.28 \times 10^{5} \mathrm{~km}$
5. Suppose the mass of Mars were written in standard form. How many digits would be to the left of the decimal?
F 23
H 25

G 24
J 26

Astronomical Data for the First Five Planets			
Planet	Avg. Distance from Sun (AU)	Diameter (km)	Mass (kg)
Mercury	0.38	4,880	3.20×10^{23}
Venus	0.72	12,100	4.87×10^{24}
Earth	1	12,800	5.97×10^{24}
Mars	1.52	6,790	6.42×10^{23}
Jupiter	5.20	143,000	1.90×10^{27}

