\qquad Date \qquad Class \qquad

SECTION
 Ready to Go On? Quiz
 $7 B$

7-6 Polynomials

Write each polynomial in standard form and give the leading coefficient.

1. $7 x^{2}+4 x^{5}-2 r$
2. $y^{3}+3-8 y^{2}+4 y$
3. $-8 w^{4}-3 w+w^{5}$
4. $3+y+5 y^{2}$
5. $9+4 x^{4}$
6. $-2 a^{2}+9+a^{8}+2 a$

Classify each polynomial according to its degree and number of terms.
7. $3 a^{2}+4 a-a^{4}+3 a^{3}$
8. $4 x^{2}+8-3 x$
9. $3 x^{3}+5 x^{2}-1$
10. $7-5 b^{4}+2 b+5 b^{2}$
11. $7 w^{2}$
12. $3 a^{4}-6 a^{8}+2 a+9$
13. The function $P(x)=x^{3}-3 x^{2}+12$ gives the profit on a product. What is the profit on 800 units?

7-7 Adding and Subtracting Polynomials

Add or subtract.

14. $\left(12 x^{4}+5 x^{3}\right)+\left(6 x^{3}+7 x\right)$
\qquad
15. $\left(13 d^{6}-4 d^{2}\right)+\left(3 d^{4}+2\right)$
\qquad
16. $\left(8 w^{2}-4 w\right)-\left(6 w^{2}+6 w\right)$
17. $\left(a^{2}-11\right)-\left(-6 a^{3}+3 a\right)$
18. $\left(4 x^{2}-3\right)+\left(10 x^{2}+5 x-7\right)$
\qquad
19. $\left(7 y^{3}+5 y^{2}\right)-\left(3 y^{2}+4 y\right)$
20. The measures of the sides of a triangle are shown as polynomials. Write a simplified polynomial to represent the perimeter of the triangle.
\qquad
\qquad

\qquad Date \qquad
\qquad

7-8 Multiplying Polynomials

Multiply.
21. $4 h^{3} \cdot 6 h^{6}$
22. $\left(x^{9} y^{5}\right)\left(-7 x^{2} y^{4}\right)$
23. $3 m n\left(6 m^{2}+4 m^{3} n\right)$
24. $(4 w+3)^{2}$
25. $\left(3 x^{3}+2 y\right)(5 x+y)$
26. $\left(a^{2}+4\right)\left(3 a^{2}-4 a-7\right)$
27. Write a simplified polynomial expression for the area of a rectangle whose length is $x+8$ units and whose width is $x-5$ units.
\qquad

7-9 Special Products of Binomials

 Multiply.28. $(x+8)^{2}$
29. $(2 x+3)^{2}$
30. $(3 x+7 y)^{2}$
31. $(a-5)^{2}$
32. $(x-y)^{2}$
\qquad
33. $(x-3)(x+3)$
34. $(6 x-7)(6 x+7)$
\qquad
35. A swimming pool has a radius of $x-4$ inches. Write a polynomial that represents the area of the swimming pool. (The formula for the area of a circle is $A=\pi r^{2}$, where r represents the radius of the circle.) Leave the symbol π in your answer.
